CHROM. 12,979

Note

Thin-layer chromatographic separation of potential antineoplastic agents: 1-ethoxycarbonyl-2-arylazo-2-nitroethanes

J. S. UPADHYAYA*.*

Surgical Research Laboratory, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005 (India)

and

S. K. UPADHYAYA M.S. College, Saharanpur-247001 (India) (Received March 4th, 1980)

There is increasing interest in the synthesis, thin-layer chromatographic (TLC) separation and biological evaluation of compounds containing the $N^*-N^*-S^*$ or $O^*-N^*-S^*$ tridentate ligand system¹⁻⁵ or arylazo grouping^{6,7}. This interest stems mainly from certain interesting biological activities^{8,9}, carcinostatic activities of heterocyclic carboxylaldehyde thiosemicarbazones and the interfering action of 5-arylazopyrimidines with nucleic acid synthesis.

As part of a general study directed towards the development of antineoplastic agents, the above-mentioned rationale led to the examination of the synthesis and biological properties of 1-ethoxycarbonyl-2-arylazo-2-nitroethanes. However, little or no information was available on the separation, identification and determination of these compounds. Hence the present study was undertaken in order to establish a sensitive and reproducible chromatographic procedure for the separation and identification of various 1-ethoxycarbonyl-2-arylazo-2-nitroethanes.

MATERIALS AND METHODS

TLC plates were prepared from a slurry of 40 g of silica gel G (Merck, Darmstadt, G.F.R.) in 80 ml of distilled water. The slurry was spread on 20×20 cm glass plates to a thickness of 0.20 mm with a Stahl applicator. The plates were air dried, activated at 110°C for 4 h and stored in a desiccator.

A 1% solution of each compound in acetone was prepared and 1 μ l of the solution (corresponding to 10 μ g of each compound) was spotted 2.0 cm from the edge of the TLC plate with a moiropipette. The chromatogram was developed with benzene-chloroform-*n*-hexane (5:1:5) until the solvent front had travelled 16 cm. About 70 min were usually required for the development of the plate.

The chromatogram was then dried with a hot-air blower, sprayed with 10% (w/v) methanolic potassium hydroxide solution and then heated at 50°C.

^{*} Present address: Institute of Paper Technology, University of Roorkee, Saharanpur-247 001, India.

NOTES

RESULTS AND DISCUSSION

The results are given in Table I. Each $R_F \times 100$ value represents the mean of five identical runs; each series of five determinations showed only slight variations, within the limits of experimental error.

No appropriate colour change occurred when the chromatograms were viewed under UV light.

TABLE I

TLC SEPARATION OF I-ETHOXYCARBONYL-2-ARYLAZO-2-NITROETHANES

General formula of compounds:

ids: $\bigvee_{N=N-CH-C-OC_{2}H_{5}}$. Plate: silica gel G, 20 × 20 cm,

R	$R_F imes 100^*$	Colour of spots
H	46	Yellow
2-NO2	18	Orange
3-NO2	22	Deep yellow
4-NO2	12	Orange red
2,3-(CH ₃) ₂	34	Deep yellow
2,4-(CH ₃) ₂	40	Yellow
2-Cl	25	Yellow
3-Cl	30	Yellow
4-Cl	37	Deep yellow
2-Br	43	Yellow
2,3-(Cl ₂)	51	Deep yellow
2,4-(Cl ₂)	47	Deep yellow
4-Cl-2,5-(OCH ₃) ₂	15	Deep yellow

0.20 mm layer. Developing solvent: benzene-chloroform-n-hexane (5:1:5).

* Averages of five identical runs.

The detection limit was ca. 1 μ g for each compound. The only adsorbent used was silica gel G. Activation of the TLC plates at 75–150°C was also examined. Heating the plate hardly affected the chromatograms, but the best separation was achieved with a plate heated at 110°C for 30 min.

Several other developing solvents, e.g., benzene-chloroform (4:1), benzene-*n*-hexane (4:1) and benzene-chloroform-*n*-hexane (4:1:1) were also examined, but the chromatograms obtained had the disadvantage of incomplete separation of some of these compounds, which would be a serious handicap in analytical studies. Sharp spots free from tailing were obtained only with benzene-chloroform-*n*-hexane (5:1:5). Increasing the proportion of chloroform gave higher R_F values, but did not improve the separation.

The R_F values obtained with this system were adequate for the separation and identification of the compounds of interest.

REFERENCES

1 R. W. Brockmen, J. R. Thomson, M. J. Bell and H. E. Skipper, Cancer Res., 16 (1956) 167.

2 F. A. French and B. L. Freedlander, Cancer Res., 18 (1958) 1920.

- 3 F. A. French and B. L. Freedlander, Cancer Res., 20 (1960) 505.
- 4 F. A. French and E. J. Blanz, Jr., Cancer Res., 23 (1963) 9.
- 5 F. A. French and E. J. Blanz, Jr., J. Med. Chem., 9 (1966) 585.
- 6 D. J. Beaver, D. P. Roman and P. J. Stoffel, J. Med. Chem., 6 (1963) 501.
- 7 R. E. Harmon, F. E. Dutton and H. D. Warren, J. Med. Chem., 11 (1968) 627.
- 8 E. J. Modest, H. N. Schlein and G. E. Foley, J. Pharm. Pharmacol., 9 (1957) 68.
- 9 R. L. Mayer, P. C. Eisman and E. A. Konopka, Proc. Soc. Exp. Biol. Med., 82 (1953) 769.